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CONDITIONS FOR SIMILITUDE I N  THE CASE OF 

BOUNDARY LAYER 
SUNDER BODIES W I T H  A HYPERSONIC TURBULENT 

WLSA TT F-9297 

ABSTRACT 

The conditions fo r  s imi l i t ude  in hypersonic f l o w  past f la t  

( u  = 0) and axisymmetric ( U  = 1) slender blunt bodies with 

a turbulent boundary layer on the surface a re  investigated, 

assuming variable entropy a t  the outer edge of the layer. 

The case of a laminar boundary layer has been t reated pre- 

viously by the author (ref. 1) and without regard f o r  the 

influence of variable entropy by Cheng, e t  a l .  (ref. 2) .  

I n  hypersonic flow past slender blunt bodies, the  boundary layer on t h e i r  

l a t e r a l  surface i s  developed inside an inviscid, intensely turbulent, high- 

entropy layer  produced by the gas passing through a steeply inclined shock wave 

segment formed i n  the  v ic in i ty  of the nose. 

Due t o  the high temperature and low density of the gas, the pressure 

across the high-entropy layer may be assumed constant. 

Strong transverse entropy gradients i n  the inviscid high-entropy layer 

cause a considerable variation i n  entropy over the edge of the boundary layer, 

l. which can have an appreciable effect  on i ts  character is t ics ,  par t icular ly  i n  

0 the case of a turbulent boundary layer with an effective adiabatic exponent Y 

near unity. This can be amply confirmed by the use, f o r  example, of empirical 

This w a s  f irst  pointed out by Ferri  and Libby (ref.  3 )  and l a t e r  investi-  1 

gated by a number of authors. 
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formulas (ref. 4 )  t ha t  have been verified i n  the range of k c h  numbers 

9 = 2 t o  10: 

c , = - -  qw - 0.0296 cr+~R+-O-2p+uI (i, - &) , 

*(R.= R,, R,=-  pm'u Pal , i, = i, + 0.45, i, = 0.28 i, + 0.22 i,+0.5 io 

Given Constance u, p p  , and p i ,  a Free-stream Mach number M = a; , 
c 

and p M 0.03, these equations yield values of c and c l e s s  f o r  S = S 
f 9 1 0  

than f o r  S1 << So (:,e., for  

respectively a t  Y 1.4, and by a factor  of 4 and 2.1 respectively a t  

>> 1 and u M 1) by a factor  of 1.8 and 1.5 

0 =  

Y o  = 1.1. 

The following notation is used: r and a a r e  the loca l  f r i c t i o n  and 
W 

heat f lux,  1 

viscosity,  and velocity of the f r ee  stream, p, $p, i8, pp, 

UU a re  the pressure, enthalpy, density, viscosity,  and velocity of the a i r ,  

i s  the length of the body, p, , pa  , and U a r e  the density, 

, pp, , and 

respectively, S i s  the entropy, 4- the Prandtl number. The subscripts 1, w, 

and 0 r e fe r  t o  the values of the variables a t  the edge of the boundary layer,  

on the surface of the body, and a t  the blunt body c r i t i c a l  point. The as te r i sk  

indicates the loca l  pressure value of p and the so-called controlling 

enthalpy is. 

L e t  us assume tha t  the  equation of s t a t e ,  viscosity, and Prandtl n u m b e r b  

i n  the high-entropy layer a re  given by the equations 



I n  the shock layer (high-density layer  contiguous t o  the compression 

shock), the a i r  i s  assumed t o  be an ideal  gas with constant adiabatic 

exponent Y . 
L e t  x = x 1 and y 1 1 = y1  be the coordinates along the axis  and along the 

normal t o  the surface of a body whose shape i s  specified by the equation 

where d and c a re  the midsection diameter and drag coefficient of the nose, 
X 

a and /3 are  character is t ic  slopes of the shock wave and surface of the body. 

Then, i n  order t o  have simili tude of flow, including that i n  the high-entropy 

layer, i n  the case of inviscid f l o w  past slender blunt bodies of ident ical  

configuration r (x), it is  required, according t o  references 1 and 5 ,  that the 

following parameters be invariant i n  similar eases: 
W 

e = Mp, k 

and tha t  the following function be invariant i n  the high-entropy layer: 

where 9 i s  the dimensional streaming function, E is  the slope of the 

shock wave a t  i t s  points of intersection with streamline 9 .  

Similitude w i l l  hold in the high-entropy layer  under the condition tha t  

a t  constant entropy the dependence of i on p can be neglected, which i s  t rue  

when y o  - 1  << 1 or  when the  variations in cy a re  small i n  similar cases. 
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With an ident ical  equation of s ta te ,  the quant i t ies  i (s ,  k)  and p(s,  k) 

immediately behind the shock wave w i l l  be the same,2 hence i n  similar cases the 

functions i ( B )  and u(6) i n  the high-entropy layer  w i l l  be the same. 

I n  analyzing a turbulent boundary layer,  we w i l l  a s m e  tha t  the 

quant i t ies  7 

a boundary layer on a plate ,  and we w i l l  take in to  account t h e i r  dependence on 

the  dis t r ibut ion of the functions 

and % depend on the loca l  boundary parameters as  i n  the  case of 
W 

by means of the coefficients (F and G i n  eqs. ( 6 ) ) ,  which a re  functionals of 

the functions ( 5 ) .  Then, extending equations (2) t o  the en t i r e  region of the 

boundary layer, the existing empirical re la t ions f o r  p la tes  (see, e.g., ref. 3 )  

can be generalized t o  the case of the inconstant functions ( 5 )  a s  follows: 

The momentum and energy equations f o r  the turbulent boundary layer  a r e  / 15  

used i n  in tegra l  form: 

Assuming everywhere an idea l  polytropic gas, the e f fec t  of the Mach 2 

number M on the prof i le  of the shock wave i n  i t s  leading portion and the rela-  

t ions  describing it a re  accounted for i n  the variable k( y, M). This ef fec t  

of M w i l l  be neglected i n  the case of the  general equation of state. 
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Regarding the profiles of the quantities u/u and i/i we will assume 
1 0' 

that they depend on the variable 9 = y/6 (where 1 ij is the thickness of the 

boundary layer), on the local values of i and i and derivative ai/t?q at 

9 = 1, as well as on the two parameters3 hl and A 2. Then the integrals 
1 W 

will also depend on these parameters and the boundary conditions, where 

P, P o  is the density at the given local pressure and stagnation enthalpy. 

Making use of equations (6) and ( 8 ) ,  equations (7) reduce to the form 

We note that, assuming known laws of friction and heat transfer ( 6 ) ,  it 

may then be presumed conceptually possible to determine the coefficients F and 

G from the distribution of the functions (5). Specifically, these coefficients 

can be prescribed functions of the local boundary 
w6 

6 7 9 ,  A1, h2. 

The quantities i, = i(6,) and u, = ~(6,) are 

conditions and parameters 

determined from the equations 
&. I J. 

of mass flaw through the cross section 

In a more general formulation of 3 

hl and h by ence of the profiles on 2 

I 

of the boundary layer: 

the problem we would replace the depend- 

their functional relation with the 

distribution of the functions (5). For 

coefficients F and G may also depend on the parameter 6 /Prw. 

v = 1, these profiles and the 
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I 

The re la t ive  thickness of the boundary layer Y1 must be determined, as  i n  

the laminar case, from the st ipulation t h a t  the velocity and enthalpy prof i les  

join smoothly between the inviscid high-entropy layer and boundary layer: 

i = f,, u = a, 

If the boundary layer exceeds the  l i m i t s  of the high-entropy layer, the 

conditions (11) then assume the form 

i, = as = 0, U,% 1 for rl"f 

The term containing dul/dx drops out of equations (9 ) ,  and equation (lo& 

becomes superfluous. It is expected that the character is t ics  of the turbulent 

boundary layer  (the functions F and G i n  par t icular) ,  a s  i n  the laminar case, 

w i l l  not depend on i for i << 1, i.e., on Iv$ for 5 >> 1. This i s  corroborated 
1 1 

t o  a cer ta in  extent by the empirical formula (l), which does not depend 

i as  i -c- 0. 
1 1 

Equations (9) t o  (11) comprise a closed system in the unknowns 

AI, A 2 ,  bl, and Y I n  order t o  solve equatians (10) we need t o  how 

values of A and A near the nose (x zz 0), which must be ascertained 
1. 

1 2 

on 

the 

in 

* 
terms of the quant i t ies  6 6  and 6 6 in the  region where the nose joins the 

l a t e r a l  surface. Since p - cy2,  the r a t i o  of the t o t a l  heat f lux  or f r i c t i o n  

forces on the nose t o  t h e i r  va lues  on the l a t e r a l  surface, a s  w e l l  a s  the 
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* 
corresponding r a t io s  f o r  6 9 and 8 8  

order . 
, according t o  (l), are of the  

4 

A s  i n  reference 1, the category of s i tuat ions investigated w i l l  be 

5 d e l i m i t e d  by the condition . 

Then 

Consequently, when the  conditions (13) a r e  sa t i s f ied ,  w e  have 

6 (O)/S (1) <<lo Hence, it may be assumed t h a t  6 (0) x 0 and the e f f ec t  of 

the conditions a t  x zz 0 on the solution of equations (10) can be neglected. 

4This presupposes the existence throughout of a turbulent boundary layer. 

Should a laminar layer prevai l  on the blunt body, this w i l l  only (for 

suf f ic ien t ly  large R a) ) reduce the  value of o . 
5The maximum order of magnitude of Ka = K( p / a  ) 3+v w i l l  occur when 

the  order of the perturbations injected i n t o  the airstream by the  body are 

governed by the influence of the nose. Inasmuch a s  in this case Ka 1, the 

f irst  condition (13) w i l l  almost always be satisfied f o r  m = 0. 

o <<1 cannot be m e t  f o r  a blunt cylinder, because now it is  possible f o r  

The condition 

- (d/l (Y 2)4/5 - 1; f o r  a plate,  o - (d/l )4'15<< 1. 
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c 

The influence of the boundary layer on the outer flaw can be taken into 
* 

account by increasing the thickness of the layer to the value 6 

boundary layer is exceeded, and replacing the shape of the body by the effective 

shape 

at which the 

r .= B (rro (4 3. Y') (14) 

If l a 2  = p l y 2  is the thickness of that portion of the inviscid high- 

entropy layer bounded by the streamline $ at the local pressure, then clearly 1 

Here the subscript 2 refers to the values of the quantities in the 

inviscid high-entropy layer. 

Equations (9) to (15) contain, in addition to the similarity criteria ( 3 )  

and ( 4 ) ,  the parameter P 

formulate the following law of similitude. 

and the function i,(x). From this we are able to 

In hypersonic flaw past slender blunt bodies with a turbulent boundary 

layer on their lateral surface, similarity of flow will hold trueofor identical 

values of the parameters and functions 

Here the functions P(x, Y), V(x, Y) = v/p , P ( x ,  Y) in the shock layer 

andP(x, Y), u(x, Y), i(x, Y) in the inviscid high-entropy and boundary layers 

will be identical in similar cases. 
3 Furthermore, the distribution of the quantities P, cf/p 3 ,  and c / p  

9 

will be the same on the surface of the body. 



For bodies with a parer-law configuration r = x n , the characteristic W 

length 1 will be absent (refs. 4 a n d  5 )  and may be eliminated from further 

consideration, letting, for example, K = 2- V . The variables x, Y and the 
parametell' r; in this case must be replaced by the respective quantities 

In the case of a laminar boundary layer, the parameters analogous 

to R and R have the form 

Here x is the usual interaction parameter of the laminar boundary layer 

with the outer flow (ref. 1). 

The quantities (16) can be replaced by their equivalents for p - 0: 

Naw in similar cases we find identical distribution of the quantities 
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